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Abstract
In this paper, a new entanglement measure called EMM (the entanglement
measure based on minors) has been constructed by the convex roof method
and proved to be a good entanglement measure according to the axiomatic
point of view. Computation of EMM can be finished directly by the two-order
minors of a coefficient matrix, instead of the eigenvalues of the density operator
required by most of the other entanglement measures, so it is very fast and very
easy. On the other hand, EMM(|ψ〉) is related to the modified Bures distance
between |ψ〉 and the closest separable state, so it has geometry meaning. We
also investigate the relations between EMM and the entanglement of formation,
negativity and logarithmic negativity, and discover that EMM is always smaller
than or equal to them. EMM is equivalent to concurrence. However, their
definitions and methods of proof are completely different. EMM will improve
the efficiency of searching for maximally entangled multipartite states.

PACS numbers: 03.67.Mn, 03.65.Ud

1. Introduction

Quantum entanglement is one of the most fascinating features in quantum theory, which makes
it central to quantum information theory [1]. Quantum entanglement plays a key role in many
application fields such as quantum teleportation [2], quantum dense coding [3], quantum key
distribution [4], quantum secret sharing [5], etc.

An n-partite state ρ acting on Hilbert space H1
⊗

H2
⊗ · · · ⊗Hn being separable

means that there exists a decomposable ensemble
{
pi,

⊗n
j=1 ρ

j

i

}(
pi > 0,

∑
i pi = 1

)
to realize ρ, that is to say, ρ = ∑

i pi

(⊗n
j=1ρ

j

i

)
. Particularly, an n-partite pure state,
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|φ〉 ∈ H1
⊗

H2
⊗ · · · ⊗Hn, is said to be separable, if it can be written in the form

|φn〉 = ⊗n
i=1 |ψi〉, where |ψi〉 ∈ Hi(i = 1, 2, . . . , n). A multipartite state ρ is said to

be entangled if it is not separable [6].
One foundational task characterizing entanglement is quantifying the degree of

entanglement [7, 8]. The first two entanglement measures proposed are the entanglement
of distillation [7, 9] and the entanglement cost [7, 10]. These measures have direct physical
significance. The entanglement cost of ρ quantifies the maximal possible rate at which
one can convert input (the maximally entangled states of two-qubit) into output states that
approximate ρ. The entanglement of distillation of ρ qualifies at what rate we may obtain
maximally entangled states from plenty of ρ.

The measures such as the entanglement of distillation and the entanglement cost are built
to describe the entanglement in terms of some tasks. Thus they arise from the optimization
of some protocols performed on quantum states. Therefore, one of the main disadvantages of
them is difficulty in computation of their values. For this reason, many other entanglement
measures have been constructed. The most important method to construct an entanglement
measure is based on the axiomatic point of view, by allowing any function of states to be
a measure, provided it satisfies some postulates [7, 8, 11]. Vedral [8] introduced the idea of
axiomatic definition of entanglement measures and proposed that an entanglement measure is
any function that satisfies the postulates below:

(i) Entanglement vanishes on separable states and reaches a maximal value on generalized
Bell States.

(ii) Entanglement remains invariant under local unitary transformation.
(iii) Entanglement cannot increase under local operation and classical communication, i.e.,

LOCC.

Based on these postulates, many entanglement measures have been proposed over recent
years, such as the relative entropy of entanglement [8, 11], the entanglement of formation
based on Von Neumman entropy [10], the entanglement of formation based on Renyi entropy
[12], the squashed entanglement [13], negativity [14, 15], logarithmic negativity [15, 16],
norm-based entanglement [17], witnessed entanglement [18], the max-relative entropy of
entanglement [19], the robustness of entanglement [20], the Schmidt number [21] and the
entanglement measure based on covariance [22]. A family of entanglement measures built by
means of polynomials of the Schmidt coefficients was introduced by Sinolecka et al [23] and
developed by Gour [24].

Some other postulates, e.g., normalization, asymptotic continuity, convexity and
additivity, have been extended. However, it is accepted to all that the three postulates above
are essential.

The convex roof method [25] can be used to construct entanglement measures: one starts
by imposing a measure on pure states, and then extends it to mixed ones by the convex roof,

E(ρ) = inf
∑

i

piE(|ψi〉),
∑

i

pi = 1, pi � 0, (1)

where the infimum is taken over all ensembles {pi, |ψi〉} for which ρ = ∑
i pi |ψi〉〈ψi |. The

first entanglement built in this way was the entanglement of formation introduced by Bennett
[10], where E(|ψi〉) is the Von Neumann entropy of the reduced density matrix of |ψi〉〈ψi |.
Vidal [12] generalized the entanglement of formation based on Von Neumman entropy to
the entanglement of formation based on Renyi entropy. Another important entangle measure
created by the convex roof method is concurrence due to Hill and Wootters [26], which is
defined with the help of the qubit spin-flip operator for a pure state of two-qubit, and is extended
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to mixed states by the convex roof. Moreover, Wootters [27] showed that, for an arbitrary
two-qubit mixed state ρ, there exist explicit formulae of concurrence, and entanglement
of formation of ρ is the monotonously increasing determinate function of concurrence of
ρ. Rungta et al [28] generalized Wootters’s concurrence to a bipartite quantum system of
arbitrary dimensions with the help of a ‘universal inverter’ imitating the spin-flip operator and
drew an explicit formula

C(|�AB〉) =
√

2
[
1 − tr

(
ρ2

A

)]
, (2)

where ρA represents the marginal density operator of the subsystem A.
Vidal [12] and Horodecki [29] have proved in different methods that if a measure satisfies

Vedral postulates on pure states, then its convex roof extension is also an entanglement measure
on mixed states. So, if a function E(|ψ〉) satisfies Vedral postulates on pure states, then it is a
sound entanglement measure for the general state ρ (including pure states and mixed states).

So far, all the entanglement measurements are difficult to be calculated. Some
entanglement measurements, such as the entanglement cost, the distilled entanglement, the
squashed entanglement and witnessed entanglement, etc, are operational motivated, and
generally involve an optimization over high-dimensional spaces which makes their evaluation
exceedingly difficult. Almost all of the other entanglement measurements are essentially
based on the eigenvalues of density operators, such as the entanglement of formation,
the relative entropy of entanglement, the max-relative entropy of entanglement, negativity,
concurrence and a family of polynomials of the Schmidt coefficients developed by Sinolecka
et al [23] and Gour [24]. It is known to all that the computation of the eigenvalues of
density operators acting on high-dimensional Hilbert space is very complicated and takes
much time. Multipartite maximally entangled pure states play a key role in various quantum
information processing tasks [30–34], but we know little about them. Recently, several
research groups [35, 36] began to search for the maximally entangled multipartite quantum
pure states based on the entanglement measures of negativity and Von Neumman entropy,
etc, by a numerical optimization procedure, but the high computation complexity of the
entanglement measurements based on the eigenvalues of density operators tampers with badly
the efficiency of accomplishing the task. At present, the search task is fulfilled only in the
state space of no more than seven qubits. So, searching for an entanglement measurement
with low complexity of computation is of great interest, which motivates our research in this
paper.

In another of our papers [37], we present a simple separability criterion based on two-
order minors of the coefficient matrices for two-partite pure states. Just as the PPT separability
criterion [38, 39] induces an entanglement measure, negativity, we guess that this separability
criterion implies an entanglement measure, which can be defined as

E(|φ〉) = 4
∑

i �=i ′,j �=j ′
|aij ai ′j ′ − aij ′ai ′j |2, (3)

for a pure state |φ〉 = ∑d1
i=1

∑d2
j=1 ai,j |i, j 〉 and defined as equation (1) for a mixed state

ρ. Here, aij ai ′j ′ − aij ′ai ′j represents a two-order minor of the coefficient matrix (aij )d1×d2 .
For convenience, we call the entanglement measure based on minors EMM. EMM can be
computed quickly and easily since it can be finished directly by the two-order minors of the
coefficient matrices, but not by the Schmidt coefficients.

In this paper, we prove this guess, i.e., equation (3) is suitable for an entanglement
measure. In section 2, we present some lemmas which are required by the following section,
and the proofs of lemmas 2–4 are moved to appendices for clarity. Our main result that

3



J. Phys. A: Math. Theor. 42 (2009) 265301 Y Long et al

EMM is a good entangle measure is placed in section 3. In section 4, we give a geometry
interpretation about EMM. Finally, we conclude with a summary in section 5.

2. Preliminaries

First, let us give this separability criterion based on two-order minors, and the proof is referred
to paper [37].

Lemma 1 (Separability criterion based on minor). Suppose a two-partite qudit pure state
|φ〉 = ∑d1

i=1

∑d2
j=1 ai,j |i, j 〉 and its corresponding coefficient matrix is � = (aij )d1×d2 . Then,

|φ〉 is separable if and only if all the two-order minors of � are vanishing.

Now, we will present some properties of the two-order minors of the matrix, which are
stated by lemmas 2–5. The proofs of them are placed in appendices A–D, respectively.

Lemma 2. Suppose that −→a = (a1, a2, . . . , an)
T and

−→
b = (b1, b2, . . . , bn)

T are orthogonal
unit vectors in a complex field C, i.e., |−→a | = 1, |−→b | = 1, (−→a ,

−→
b ) = 0. Then∑

i<j

|aibj − ajbi |2 = 1. (4)

That is to say, the sum of the square of the module of the two-order minors of the unit orthogonal
n × 2 matrix (−→a ,

−→
b ) is equal to 1.

The result above can be generalized to unnormalized orthogonal n × 2 matrices, which is
stated by corollary 1.

Corollary 1. Suppose that −→a = (a1, a2, . . . , an)
T and

−→
b = (b1, b2, . . . , bn)

T are orthogonal
vectors in a complex field C and |−→a | = λ, |−→b | = μ. Then,∑

i<j

|aibj − ajbi |2 = λ2μ2. (5)

Lemma 3. Suppose that any two rows and any two columns of A = (aij )d1×d2 are orthogonal,
respectively. U = (uij )d1×d1 and V = (vij )d2×d2 are unitary matrices. Let B = UA,C =
AV,A(kr, js) = akrajs−aksajr , B(mr, ns) = bmrbns−bmsbnr , C(mr, ns) = cmrcns−cmscnr .
Then,

(i)
∑

m<n,r<s |B(mr, ns)|2 = ∑
k<j,r<s |A(kr, js)|2,

(ii)
∑

m<n,r<s |C(mr, ns)|2 = ∑
k<j,r<s |A(kr, js)|2.

Lemma 3 means that the sum of the square of the module of the two-order minors of the
orthogonal matrix remains invariant under unitary transformation.

Lemma 4. For a two-partite qudit pure state |φ〉 = ∑d1
i=1

∑d2
j=1 ai,j |i, j 〉. Suppose its Schmidt

decomposition is |φ〉 = ∑d
i=1

√
λi |μi〉|νi〉. Here, d is the Schmidt number of state |φ〉, λi are

nonnegative real numbers satisfying
∑d

i=1 λi = 1, {|μi〉 | 1 � i � d}, and {|νi〉 | 1 � i � d}
are orthogonal quantum states in the Hilbert spaces H1 and H2, respectively. Denote∑

i<i ′,j<j ′ |aij ai ′j ′ − aij ′ai ′j |2 by Minors(�). Then,

Minors(�) = 1

2

d∑
i=1

λi(1 − λi). (6)
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Lemma 4 relates the quantity Minors(�) with a polynomial function of Schmidt
coefficients.

Lemma 5. Suppose
−→
λ = (λ1, λ2, . . . , λd) be a d-dimensional real vector, where λi’s are

nonnegative real numbers satisfying
∑d

i=1 λi = 1. Denote 1
2

∑d
i=1 λi(1 − λi) by f (

−→
λ ). Then

f (
−→
λ ) � 1

2

(
1 − 1

d

)
, and the equality is true if and only if ∀ i, λi = 1

d
.

By lemma 5, we have Minors(�) � 1
2

(
1 − 1

d

)
.

Lemma 6. Suppose that |φ〉 = ∑d1
i=1

∑d2
j=1 ai,j |i, j 〉 is an entangled state on (d1 × d2)-

dimensional Hilbert space HA ⊗ HB , and its Schmidt form is

|φ〉 =
d∑
j

√
λj |uj 〉|vj 〉, d = min(d1, d2). (7)

Here, {|uj 〉|j = 1, . . . , d} and {|vj 〉|j = 1, . . . , d} are orthogonal states set chosen so that
the Schmidt coefficients λj are in increasing order, i.e.

0 � λ1 � λ2 � · · · � λd. (8)

Then an ensemble {pk, |φk〉|k = 1, . . . , N} can be produced from |φ〉 by a suitable LOCC if
and only if the majorization inequalities,

N∑
k

pkEn(|φk〉) � En(|φ〉), (9)

hold for 1 � n � d, where

En(|φ〉) =
n∑

j=1

λj , (10)

and similarly for |φk〉.
Proof. This lemma is due to Jonathan and Plenio, and please refer to [40] for the proof. �

Lemma 6 presents the sufficient and necessary conditions based on Schmidt coefficients
that a pure state |φ〉 can be transformed into an ensemble {pk, |φk〉|k = 1, . . . , N} by a suitable
LOCC.

Lemma 7. Let �x = (x1, x2, . . . , xd) and �y = (y1, y2, . . . , yd) be the d-dimensional real
vectors with xi and yi being arranged in increasing order, respectively. Suppose that
f : R → R is any convex function, F(�x) = ∑d

i=1 f (xi). Then : F(�x) � F(�y) if and only if
�x ≺ �y. Here, �x ≺ �y means that �x is majorized by �(y), i.e.,

∑n
i=1 xi �

∑n
i=1 yi, 1 � n � d.

Proof. Please refer to Alberti’s book [41] for the proof. �

Lemma 7 shows that F(�x) = ∑d
i=1 f (xi) is Schur-convex if and only if f (x) is a convex

function.
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3. Entanglement measure based on two-order minors

In this section, we will prove that EMM is a good entanglement measure for qudit pure states.
For this aim, we only need to prove the theorem below.

Theorem 1. For a two-partite qudit pure state |φ〉 = ∑d1
i=1

∑d2
j=1 ai,j |i, j 〉, Minors(�) =∑

i �=i ′,j �=j ′ |aij ai ′j ′ − aij ′ai ′j |2 satisfies the following properties:

(i) Minors(�) = 0 if and only if |φ〉 is separable.
(ii) Minors(�) reaches maximum if and only if |φ〉 is a maximal entanglement state.

(iii) Minors(�) remains invariant under local unitary transformation.
(iv) Minors(�) is not increasing under LOCC.

Proof.

(i) (If) Suppose that |φ〉 is separable. Then, by lemma 1, all the two-order minors of �

are zero, i.e., aij ai ′j ′ − aij ′ai ′j = 0 for 1 � i, i ′ � d1, 1 � j, j ′ � d2. It follows
that

∑
i �=i ′,j �=j ′ |aij ai ′j ′ − aij ′ai ′j |2 = 0, i.e., Minors(�) = 0. (Only if) Suppose

Minors(�) = 0. Then, aij ai ′j ′ − aij ′ai ′j = 0 ∀1 � i, i ′ � d1, 1 � j, j ′ � d2. It
follows that all the two-order minors of � are zero. By lemma 1, we know that |φ〉 is
separable.

(ii) It can be immediately obtained by lemmas 4 and 5.
(iii) Suppose that U and V are unitary transformation acting on the first system and the second

system, respectively. Then the state (U
⊗

V )|φ〉 corresponds to the coefficient matrix
U�V , denoted by �′. The singular-value decomposition theorem says that there exist
unitary matrices U1, V1 such that � = U1	V1. Here,

	 =
(

diag(
√

λ1,
√

λ2, . . . ,
√

λd) 0
0 0

)
,

where
√

λi’s are the singular value of �, i.e., the Schmidt coefficients of the state |φ〉. So,

�′ = UU1	V1V. (11)

Obviously, matrices UU1, V V1 are unitary matrices too. By lemma 4, we have

Minors(�′) = 1

2

d∑
i=1

λi(1 − λi) = Minors(�). (12)

(iv) The key point of the proof is to synthesize the result of lemmas 4, 6 and 7. Suppose that
the ensemble produced from |φ〉 by LOCC is {pk, |φk〉|k = 1, . . . , N}, and the Schmidt
form of |φ〉 is

|φ〉 =
d∑

j=1

√
λj |uj 〉|vj 〉. (13)

Here, d = min(d1, d2), {|uj 〉|j = 1, . . . , d} and {|vj 〉|j = 1, . . . , d} are orthogonal sets
chosen so that the Schmidt coefficients λj ’s are in increasing order, i.e.

0 � λ1 � λ2 � · · · � λd. (14)

Similarly, suppose that the Schmidt form of |φk〉 is

|φk〉 =
d∑
j

√
μkj |ckj 〉|dkj 〉. (15)

6
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Here, {|ckj 〉|j = 1, . . . , d} and {|dkj 〉|j = 1, . . . , d} are orthogonal sets chosen so that
the Schmidt coefficients μkj are in increasing order, i.e.

0 � μk1 � μk2 � · · · � μkd. (16)

By lemma 6, we have the majorization inequalities:∑
k

n∑
i=1

pkμki �
n∑

i=1

λi. (17)

That is to say, (
−→
λi ) ≺ (−−−→∑

kpkuki

)
. By lemma 4, we know that the entanglement measures

of |φ〉 and |φk〉 are

EMM(|φ〉) = 4 × Minors(�) = 2
d∑

i=1

λi(1 − λi) = 2

(
1 −

d∑
i=1

λ2
i

)
(18)

and

EMM(|φk〉) = 4 × Minors(�k) = 2
d∑

i=1

μki(1 − μki) = 2

(
1 −

d∑
i=1

μ2
ki

)
, (19)

respectively. So, the entanglement measure of the ensemble {pk, |φk〉} is∑
k

pk EMM(|φk〉) =
∑

k

4pk Minors(�k) = 2

(
1 −

∑
k

d∑
i=1

pkμ
2
ki

)
. (20)

Since the function x2 is convex, lemma 7 and equation (17) show that

2

(
1 −

d∑
i=1

( ∑
k

pkμki

)2)
� 2

(
1 −

d∑
i=1

λ2
i

)
. (21)

By the property of convex functions, we have(∑
k

pkμki

)2

�
∑

k

pkμ
2
ki . (22)

It follows that

2

(
1 −

∑
k

d∑
i=1

pkμ
2
ki

)
� 2

(
1 −

d∑
i=1

(∑
k

pkμki

)2)
. (23)

By combining inequalities (23) and (21), we have

2

(
1 −

∑
k

d∑
i=1

pkμ
2
ki

)
� 2

(
1 −

d∑
i=1

λ2
i

)
. (24)

That is to say, the entanglement measure of the ensemble {pk, |φk〉} is not greater than
that of |ψ〉. �

It is worth pointing out that the result that Minors(φ) is not increasing under LOCC can be
generalized to that Minors(φ) is not increasing under an arbitrary separable operation. This is
because the result of lemma 6 can be generalized from LOCC to general separable operation
[42].

Theorem 2. For a qudit pure state |φ〉 = ∑d1
i=1

∑d2
j=1 ai,j |i, j 〉, EMM(|φ〉) � EV N(|φ〉),

where EMM(|φ〉) = 4
∑

i �=i ′,j �=j ′ |aij ai ′j ′ − aij ′ai ′j |2, EV N(|φ〉) = −∑
i pi log pi represent

7
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the entanglement measure based on minors and the entanglement measure based on Von
Neumman entropy, respectively.

Proof. Let f (x) = log2

(
1√
x

)
+ x − 1. Then it is easy to validate that f (x) is a convex

function. Suppose that the Schmidt coefficients of |φ〉 are {√λj |1 � j � d}. Then
pj = λj , j = 1, . . . , d. By the property of convex functions, we have

d∑
i=1

pif (pi) � f

( d∑
i=1

p2
i

)
. (25)

Let p = ∑d
i=1 p2

i . Then we have 1/d � p � 1. Now,

f (p) = f

(
d∑

i=1

p2
i

)
= log2

(
1√
p

)
+ p − 1. (26)

It is easy to validate that f (p) is monotonously increasing in [1/2, 1] and monotonously
decreasing in [1/d, 1/2]. So,

f (p) � f (1/2) = 0. (27)

Equations (25) and (27) suggest that
d∑

i=1

pif (pi) � 0, (28)

i.e., ∑
i

−pi log2(pi) �
∑

i

2pi(1 − pi). (29)

That is to say,

EMM(|φ〉) � EV N(|φ〉). (30)
�

Theorem 2 can be generalized to mixed states easily, which is stated by the following
corollary.

Corollary 2. For a qudit mixed state ρ, EMM(ρ) � EF (ρ), where EMM(ρ) and EF (ρ)

represent the entanglement measure based on minors and the entanglement of formation of ρ,
respectively.

It was shown [7] that, for a pure state, the entanglement of formation is equal to its
entanglement cost. Moreover, if the hypothesis that the entanglement of formation is an
additive quantity is proven to be true, then the entanglement of the formation of a mixed state
is also equal to its entanglement cost [1, 43]. Theorem 2 and corollary 2 show that the EMM
is bounded up by the entanglement of formation. This makes the EMM have an operational
interpretation, i.e., providing a lower bound of the entanglement cost.

Corollary 3. Let EN(ρ) = log‖ρ
A ‖1
2 represent the logarithmic negativity of the density

operator ρ. Hereafter, ρ
A represents the partial transpose of ρ over the subsystem A and
‖ρ‖1 represents the trace norm of ρ. Since EF (ρ) � EN(ρ) [15], we can obtain the relation
between EMM(ρ) and EN(ρ) immediately as follows:

EMM(ρ) � EN(ρ). (31)

8
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Theorem 3. For a qudit pure state ρ = |φ〉〈φ|, EMM(ρ) � N(ρ), where N(ρ) = ‖ρ
A‖1−1
represents the negativity of ρ [14].

Proof. Let |φ〉 = ∑d
i=1

√
λi |μi〉|νi〉 be the Schmidt decomposition of the state |φ〉. Then, by

lemma 4 and equation (3), we have

EMM(ρ) = 4 Minors(�) = 2
d∑

i=1

λi(1 − λi). (32)

On the other hand, we have [15]

N(ρ) =
( d∑

i=1

√
λi

)2

− 1 = 2
∑
i<j

√
λi

√
λj . (33)

So,

EMM(ρ) − N(ρ) = 2

( d∑
i=1

λi(1 − λi) −
∑
i<j

√
λi

√
λj

)
(34)

= 2

(
1 −

d∑
i=1

λ2
i −

∑
i<j

√
λi

√
λj

)
(35)

= 2

(
1 −

( d∑
i=1

λi

)2

+ 2

( ∑
i<j

λiλj

)
−

∑
i<j

√
λi

√
λj

)
(36)

= 2

( ∑
i<j

√
λi

√
λj (2

√
λi

√
λj − 1)

)
(37)

� 0. (38)

Here we have used
∑d

i=1 λi = 1 in equation (36) and 2
√

λi

√
λj � λi + λj � 1 in

equation (37). The equality in equation (38) is true if and only if there exist only two
nonzero Schmidt coefficients λi and λj such that λi = λj . Thus, when ρ is a pure state, we
have

EMM(ρ) � N(ρ). (39)

However, when ρ is a mixed state, the convexity of N(ρ) [20], i.e., N
( ∑

i piρi

)
�

∑
i piN(ρi)

implies that equation (39) may not be true. �

4. Geometry interpretation

Exploring a geometric approach to quantify the measure of entanglement was first introduced
by Shimony [44] in the setting of bipartite pure states, and then generalized to the multipartite
setting (via projection operations of various ranks) by Barnum and Linden [45]. For a pure
state |ψ〉, the geometric measure of entanglement, for short GME, is defined as

Esin2(|ψ〉) = 1 − �2
max = 1 − max|φ〉∈SP

‖〈φ|ψ〉‖2, (40)

where SP represents the set of separable pure states. For a mixed state ρ, it is defined as

Esin2(ρ) = inf
∑

pi ,|ψi 〉
piEsin2(|ψi〉), (41)

where ρ = ∑
i pi |ψi〉〈ψi |.

9
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The Bures metric introduced by Vedral and Plenio [11] is indeed another form of the
geometry measure of entanglement. For a mixed state σ , its Bures metric of entanglement is
defined as

EB(ρ) = Minσ∈SDB(σ‖ρ) = 2 − 2
√

Maxσ∈SF (σ, ρ), (42)

where F(σ, ρ) = [tr{√ρσ
√

ρ}1/2]2 is the so-called fidelity (or Uhlmanns transition
probability) [46], and S represents the set of separable states (including pure states and mixed
states).

Recently, Cao and Wang [47] presented a revised geometric measure of entanglement
(RGME), which is defined as

Ẽsin2(ρ) = 1 − Maxσ∈SF (ρ, σ ) = Minσ∈S(1 − F(ρ, σ )), (43)

where F(σ, ρ) = [tr{√ρσ
√

ρ}1/2]2, and S denotes the set of separable states.
We can revise Cao’s RGME by the method of convex roof as follows. For a pure

state |ψ〉, ˜̃Esin2(|ψ〉) = 1 − Maxσ∈SF (|ψ〉〈ψ |, σ ) = Minσ∈S(1 − F(|ψ〉〈ψ |, σ )), (44)

and for a mixed state ρ,˜̃Esin2(ρ) = inf
∑

pi ,|ψi 〉
pi

˜̃Esin2(|ψi〉), ρ =
∑

i

pi |ψi〉〈ψi |. (45)

Using the method presented by Vedral [11], we can show that, for the two-qudit pure
state |ψ〉 = ∑d

j=1

√
λj |aj 〉|bj 〉, the closest separable state to it by the Bures metric is

σ ∗ = ∑d
j=1 λj |aj 〉|bj 〉〈aj |〈bj |. That is to say,

Maxσ∈SF (σ, |ψ〉〈ψ |) = F(σ ∗, |ψ〉〈ψ |) =
d∑

j=1

λ2
j . (46)

Therefore,

˜̃Esin2(|ψ〉) = 1 −
d∑

j=1

λ2
j . (47)

By lemma 4, we know

EMM(|ψ〉) = 4 Minors(�) = 2

(
1 −

d∑
j=1

λ2
j

)
= 2˜̃Esin2(|ψ〉〈ψ |). (48)

This shows that, for a pure state, its entanglement measure EMM is exactly two times
of its geometric entanglement measure ˜̃Esin2 . For a mixed state ρ, since both EMM(ρ) and˜̃Esin2(ρ) are constructed by the convex roof, the relation for pure states keeps true.

5. Conclusion

We have constructed a new entanglement measure called EMM (the entanglement measure
based on minors) by the convex roof method, which has been used to construct some important
entanglement such as the entanglement of formation, concurrence, negativity and logarithmic
negativity. The new entanglement measure has been defined as equation (3) for pure states,
and equation (1) for mixed states. We have proved that EMM is a good entanglement measure
since it satisfies the three basic postulates for an entanglement measure: vanishes on separable
states, remains invariant under unitary transformation and decreases monotonously under

10
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LOCC. We have also investigated the relations between EMM and some other important
entanglement measures constructed by the axiomatic point of view, such as the entanglement
of formation, negativity, logarithmic negativity and concurrence. It is discovered that EMM
is always smaller than or equal to the entanglement of formation. This makes the EMM
have an operational interpretation, i.e., providing a lower bound of the entanglement cost.
The relations between EMM and another two important entanglement measurements, i.e.,
negativity and logarithmic negativity, have also been obtained (see corollary 3 and theorem 3).
For a two-partite quantum system of arbitrary dimensions |φ〉, by equation (2) and lemma 4, we
have the relation EMM(|φ〉) = (C(|φ〉)2). That is to say, EMM is equivalent to concurrence.
However, their definitions and methods of proof are completely different.

Lemma 4 shows that the computation of EMM can also be done by the eigenvalues of
coefficient matrices like most of the other entanglement measures. However, the definition
of EMM shows that its computation can be finished directly by the two-order minors of
coefficients matrices. Therefore, compared with the other entanglement measures, one of the
most important advantages for EMM is that it can be computed easily and quickly. Another
advantage of EMM is that it can be interpreted by geometry (see equation (48)), i.e., EMM(|φ〉)
is related to our modified Bures metric(see equations (44) and (45)) between |φ〉 and the closest
separable state. EMM can be generalized to multipartite quantum states easily. At present, by
the numerical optimization procedure based on negativity and Von. Neumman entropy, etc,
the five-qubit maximally entangled state and six-qubit maximally entangled state have been
found by Brown et al [35] and Borras et al [36], respectively. It is believed that using the
EMM will improve the efficiency of searching for maximally entangled multipartite state, and
bring us hope to find maximally entangled states in the higher-dimensional Hilbert spaces.
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Appendix A

In this appendix, we will prove lemma 2.

Proof. By (−→a ,
−→
b ) = 0, we have
n∑

i=1

aib
∗
i = 0. (A.1)

It follows that ∣∣∣∣∣
n∑

i=1

aib
∗
i

∣∣∣∣∣
2

=
n∑

i=1

aib
∗
i

n∑
j=1

a∗
j bj

=
∑
i,j

aia
∗
j bjb

∗
i

= 0. (A.2)

By the same reason, we have∑
i,j

a∗
i aj b

∗
j bi = 0. (A.3)

11
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Therefore,∑
i<j

|aibj − ajbi |2 = 1

2

∑
i,j

|aibj − ajbi |2

= 1

2

(∑
i,j

|ai |2|bj |2 +
∑
i,j

|aj |2|bi |2 −
∑
i,j

aia
∗
j bjb

∗
i −

∑
i,j

a∗
i aj b

∗
j bi

)
= 1. (A.4)

Here, we have used the known conditions,
∑n

i= |ai |2 = 1 and
∑n

j=1 |bj |2 = 1. �

Appendix B

In this appendix, we will prove lemma 3.

Proof. (1) Since B = UA, we have

bij =
∑

k

uikakj . (B.1)

Now

B(mr, ns) = bmrbns − bmsbnr (B.2)

=
∑

k

umkakr

∑
j

unjajs −
∑

k

umkaks

∑
j

unjajr (B.3)

=
∑
k<j

(umkunj − umjunk)(akrajs − aksajr ) (B.4)

=
∑
k<j

U(mk, nj)A(kr, js). (B.5)

So,

|B(mr, ns)|2 = B(mr, ns)B(mr, ns)∗

=
( ∑

k<j

(umkunj − umjunk)(akrajs − aksajr )

)

×
( ∑

k<j

(umkunj − umjunk)(akrajs − aksajr )

)∗

=
( ∑

k<j

U(mk, nj)A(kr, js)

)( ∑
k′<j ′

U(mk′, nj ′)A(k′r, j ′s)
)∗

. (B.6)

Denote
∑

m<n,r<s |B(mr, ns)|2 by M. Then

M =
∑
m<n

∑
r<s

( ∑
k<j

U(mk, nj)A(kr, js)

)
×

( ∑
k′<j ′

U(mk′, nj ′)A(k′r, j ′s)
)∗

=
∑
m<n

∑
r<s

( ∑
(k<j,k′<j ′)

U(mk, nj)U ∗(mk′, nj ′)A(kr, js)A∗(k′r, j ′s)
)

=
∑

(k<j,k′<j ′)

( ∑
m<n

U(mk, nj)U ∗(mk′, nj ′)
)(∑

r<s

A(kr, js)A∗(k′r, j ′s)
)

12
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=
∑
k<j

( ∑
m<n

|U(mk, nj)|2
)( ∑

r<s

|A(kr, js)|2
)

+
(k �=k′orj �=j ′)∑
(k<j,k′<j ′)

∑
m<n

U(mk, nj)U ∗(mk′, nj ′)
∑
r<s

A(kr, js)A∗(k′r, j ′s). (B.7)

By lemma 2, we know∑
m<n

|U(mk, nj)|2 = 1. (B.8)

So, ∑
k<j

( ∑
m<n

|U(mk, nj)|2
)( ∑

r<s

|A(kr, js)|2
)

=
∑
k<j

∑
r<s

|A(kr, js)|2. (B.9)

On the other hand, when k < j, k′ < j ′ and k �= k′ or j �= j ′, denote∑
r<s A(kr, js)A∗(k′r, j ′s) by N. Then,

N =
∑
r<s

(akrajs − aksajr )(a
∗
k′ra

∗
j ′s − a∗

k′saj ′r∗)

=
∑
r<s

akrajs(a
∗
k′ra

∗
j ′s − a∗

k′saj ′r∗) −
∑
r<s

aksajr (a
∗
k′ra

∗
j ′s − a∗

k′saj ′r∗)

=
∑
r<s

akrajs(a
∗
k′ra

∗
j ′s − a∗

k′saj ′r∗) +
∑
r>s

akrajs(a
∗
k′ra

∗
j ′s − a∗

k′saj ′r∗)

=
∑
r,s

akrajs(a
∗
k′ra

∗
j ′s − a∗

k′saj ′r∗)

=
∑

r

akra
∗
k′r

∑
s

ajsa
∗
j ′s −

∑
r

akra
∗
j ′r

∑
s

ajsa
∗
k′s . (B.10)

The known conditions, k < j and k′ < j ′, show that k �= j ′ or j �= k′. So, by the
orthogonality of A, we have

∑
r akra

∗
j ′r

∑
s ajsa

∗
k′s = 0 and

∑
r akra

∗
k′r

∑
s ajsa

∗
j ′s = 0. Thus,

when k < j, k′ < j ′ and k �= k′ or j �= j ′, we have∑
r<s

A(kr, js)A∗(k′r, j ′s) = 0. (B.11)

Substituting equations (B.11) and (B.9) into equation (B.7), we get∑
m<n

∑
r<s

|B(mr, ns)|2 =
∑
k<j

∑
r<s

|A(kr, js)|2. (B.12)

This completes the proof of the first part.

(2) C = AV implies that CT = V T AT , where CT represents the transpose of C. So, by the
first part of this lemma, we have∑

m<n

∑
r<s

|CT (mr, ns)|2 =
∑
k<j

∑
r<s

|AT (kr, js)|2. (B.13)

It is easy to check that for any matrix A, we have∑
k<j

∑
r<s

|AT (kr, js)|2 =
∑
k<j

∑
r<s

|A(kr, js)|2. (B.14)

It follows that ∑
m<n

∑
r<s

|C(mr, ns)|2 =
∑
k<j

∑
r<s

|A(kr, js)|2. (B.15)

This completes the proof of the second part. �
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Appendix C

In this appendix, we will prove lemma 4.

Proof. Suppose that the coefficient matrix corresponding to |φ〉 in basis {|i, j 〉 | 1 � i �
d1, 1 � j � d2} is � = (ai,j )d1×d2 . By the Scmidt decomposition theorem, we know that√

λi’s (i = 1, . . . , d) are exactly the singular values of �, i.e., the nonnegative square roots
of the eigenvalues of AA†. Denote the d1 × d2 matrix,(

diag(
√

λ1,
√

λ2, . . . ,
√

λd) 0
0 0

)
,

by 	. Then, by the singular-value decomposition theorem there exist unitary matrices Ud1×d1

and Vd2×d2 such that

� = U	V. (C.1)

By lemma 3, we have

Minors(�) = Minors(	). (C.2)

By corollary 1, we can get

Minors(	) =
∑
i<j

λiλj = 1

2

∑
i �=j

λiλj = 1

2

∑
i

λi(1 − λi). (C.3)

Therefore,

Minors(�) = 1

2

∑
i

λi(1 − λi). (C.4)

This completes the proof. �

Appendix D

In this appendix, we will prove lemma 5.

Proof.

f (
−→
λ ) = 1

2

d∑
i=1

λi − 1

2

d∑
i=1

λ2
i

= 1

2
− 1

2

d∑
i=1

λ2
i

� 1

2
− 1

2

(∑d
i=1 λi

d

)
= 1

2

(
1 − 1

d

)
,

where the equality is true if and only if ∀ i, λi = 1
d

. �
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[18] Brandäo F G S L 2005 Quantifying entanglement with witness operators Phys. Rev. A 72 022310
[19] Datta N 2008 Min- and max-relative entropies and a new entanglement measure arXiv:0803.2770

[quant-ph]
[20] Vidal G and Tarrach R 1999 Robustness of entanglement Phys. Rev. A 59 141
[21] Sanpera A, Bruβ D and Lewenstein M 2001 Schmidt-number witnesses and bound entanglement Phys. Rev.

A 63 050301
[22] Abascal I S and Björk G 2007 Bipartite entanglement measure based on covariance Phys. Rev. A 75 062317
[23] Sinolecka M M, Zyczkowski K and Kus M 2002 Manifolds of interconvertible pure states Act. Phys. Pol. B

33 2081
[24] Gour G 2005 A family of concurrence monotones and its applications Phys. Rev. A 71 012318
[25] Uhlmann A 1998 Entropy and optimal decompositions of states relative to a maximal commutative subalgebra

Open Sys. Info. Dyn. 5 209
[26] Hill S and Wootters W K 1997 Entanglement of a pair of quantum bits Phys. Rev. Lett. 78 5022
[27] Wootters W K 1998 Entanglement of formation of an arbitrary state of two qubits Phys. Rev. Lett. 80 2245
[28] Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Universal state inversion and concurrence in

arbitrary dimensions Phys. Rev. A 64 042315
[29] Horedecki M, Horodecki P and Horodecki R 2000 Asymptotic manipulations of entanglement can exhibit

genuine irreversibility Phys. Rev. Lett. 84 4260
[30] Yeo Y and Chua W K 2006 Teleportation and dense coding with genuine multipartite entanglement Phys. Rev.

Lett. 96 060502
[31] Chen P X, Zhu S Y and Guo G C 2006 Genuine multiparty entanglement channels for teleportation Phys. Rev.

A 74 032324
[32] Man Z X, Xia Y J and An N B 2007 Genuine multiqubit entanglement and controlled teleportation Phys. Rev.

A 75 052306
[33] Muralidharan S and Panigrahi P K 2008 Perfect teleportation, quantum-state sharing, and superdense coding

through a genuinely entangled five-qubit state Phys. Rev. A 77 032321
[34] Choudhury S, Muralidharan S and Panigrahi P K 2009 Quantum teleportation and state sharing using a genuinely

entanged six-qubit state J. Phys. A: Math. Gen. 42 115303
[35] Brown D K, Stepney S, Sudbery A and Braunstein S L 2005 Searching for highly entangled multi-qubit states

J. Phys. A: Math. Gen. 38 1119

15

http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.83.648
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevLett.78.2275
http://dx.doi.org/10.1103/PhysRevA.60.173
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevA.57.1619
http://dx.doi.org/10.1103/PhysRevLett.85.658
http://dx.doi.org/10.1063/1.1643788
http://dx.doi.org/10.1103/PhysRevA.58.883
http://dx.doi.org/10.1103/PhysRevA.65.032314
http://dx.doi.org/10.1103/PhysRevLett.95.090503
http://dx.doi.org/10.1063/1.1398062
http://dx.doi.org/10.1103/PhysRevA.72.022310
http://www.arxiv.org/abs/0803.2770
http://dx.doi.org/10.1103/PhysRevA.59.141
http://dx.doi.org/10.1103/PhysRevA.63.050301
http://dx.doi.org/10.1103/PhysRevA.75.062317
http://dx.doi.org/10.1103/PhysRevA.71.012318
http://dx.doi.org/10.1023/A:1009664331611
http://dx.doi.org/10.1103/PhysRevLett.78.5022
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.64.042315
http://dx.doi.org/10.1103/PhysRevLett.84.4260
http://dx.doi.org/10.1103/PhysRevLett.96.060502
http://dx.doi.org/10.1103/PhysRevA.74.032324
http://dx.doi.org/10.1103/PhysRevA.75.052306
http://dx.doi.org/10.1103/PhysRevA.77.032321
http://dx.doi.org/10.1088/1751-8113/42/11/115303
http://dx.doi.org/10.1088/0305-4470/38/5/013


J. Phys. A: Math. Theor. 42 (2009) 265301 Y Long et al

[36] Borras A, Plastino A R, Batle J, Zander C, Casas M and Plastino A 2007 Multi-qubit systems: highly entangled
states and entanglement distribution J. Phys. A: Math. Gen. 40 13407

[37] Long Y, Qiu D and Long D 2009 An O(N) algorithm of separability for two-partite arbitrarily dimensional pure
states Proc. 2nd Int. Joint Conf. on Computational Sciences and Optimization (CSO 2009) (Sanya, Hainan,
China, 24–26 April) pp 570–4

[38] Peres A 1996 Separability criterion for density matrices Phys. Rev. Lett. 77 1413
[39] Horedecki M, Horodecki P and Horodecki R 1996 Separability of mixed states: necessary and sufficient

conditions Phys. Lett. A 223 1–8
[40] Jonathan D and Plenio M B 1999 Minimal conditions for local pure-state entanglement manipulation Phys. Rev.

Lett. 83 1455
[41] Alberti P M and Uhlmann A 1982 Stochasticity and Partial Order-Doubly Stochastic Maps and Unitary Mixing

(Dordrecht: Reidel)
[42] Gheorghiu V and Griffiths R B 2008 Separble operations on pure states arXiv:0807.2360 [quant-ph]
[43] Hayden P M, Horodecki M and Terhal B M 2001 The asymptotic entanglement cost of preparing a quantum

state J. Phys. A: Math. Gen. 34 6891
[44] Shimony A 1995 Degree of entanglement Ann. New York Acad. Sci. 755 675
[45] Barnum H and Linden N 2001 Monotones and invariants for multi-particle quantum states J. Phys. A: Math.

Gen. 34 6787
[46] Uhlmann A 1986 Parallel transport and ‘quantum holonomy’ along density operators Rep. Math. Phys. 24 229
[47] Cao Ya and MinWang An 2007 Revised geometric measure of entanglement J. Phys. A: Math. Gen. 40 3507

16

http://dx.doi.org/10.1088/1751-8113/40/44/018
http://dx.doi.org/10.1103/PhysRevLett.77.1413
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1103/PhysRevLett.83.1455
http://www.arxiv.org/abs/0807.2360
http://dx.doi.org/10.1088/0305-4470/34/35/314
http://dx.doi.org/10.1111/j.1749-6632.1995.tb39008.x
http://dx.doi.org/10.1088/0305-4470/34/35/305
http://dx.doi.org/10.1016/0034-4877(86)90055-8
http://dx.doi.org/10.1088/1751-8113/40/13/014

	1. Introduction
	2. Preliminaries
	3. Entanglement measure based on two-order minors
	4. Geometry interpretation
	5. Conclusion
	Acknowledgments
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

